{"id":"74d68d30-69e8-46ed-b10f-d53e013bd151","title":"What Walks on Four Legs Riddle","created_at":"2025-03-17T17:43:48Z","saved":true,"shared":true,"branch_id":"524f883c-0ce7-46e0-9cd2-b6f994b46006","tag_ids":[],"read_only":true}
[{"id":"747d7626-32a6-4f98-8555-7d4eeeea3062","created_at":"2025-03-17T17:44:47Z","branch_list":["00000000-0000-4000-0000-000000000000","19c1fed0-8a2e-4df9-b4ab-5fe532fdca7c","524f883c-0ce7-46e0-9cd2-b6f994b46006"],"state":"done","prompt":"I stole a ball and a bat that together cost $1.10. The bat is $1 more than the ball. What did I pay for the ball?","reply":"<p>Let's denote the cost of the ball as <span><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>x</mi></mrow></math></span> dollars. According to the problem:</p>\n<ul>\n<li>The bat costs $1 more than the ball, so the cost of the bat is <span><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></math></span> dollars.</li>\n<li>Together, the ball and bat cost $1.10.</li>\n</ul>\n<p>We can set up the equation based on this information:</p>\n<p>\n<div class=\"math-box\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"><mrow><mi>x</mi><mo>+</mo><mo stretchy=\"false\">(</mo><mi>x</mi><mo>+</mo><mn>1</mn><mo stretchy=\"false\">)</mo><mo>=</mo><mn>1.10</mn></mrow></math></div>\n</p>\n<p>Simplifying this equation:</p>\n<p>\n<div class=\"math-box\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"><mrow><mn>2</mn><mi>x</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>1.10</mn></mrow></math></div>\n</p>\n<p>Subtracting 1 from both sides:</p>\n<p>\n<div class=\"math-box\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"><mrow><mn>2</mn><mi>x</mi><mo>=</mo><mn>0.10</mn></mrow></math></div>\n</p>\n<p>Dividing both sides by 2:</p>\n<p>\n<div class=\"math-box\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"><mrow><mi>x</mi><mo>=</mo><mn>0.05</mn></mrow></math></div>\n</p>\n<p>Thus, the cost of the ball is <strong>$0.05</strong> (5 cents). </p>\n<p>Therefore, you paid <strong>$0.05</strong> for the ball.</p>","md":"Let's denote the cost of the ball as \\( x \\) dollars. According to the problem:\n\n- The bat costs $1 more than the ball, so the cost of the bat is \\( x + 1 \\) dollars.\n- Together, the ball and bat cost $1.10.\n\nWe can set up the equation based on this information:\n\n\\[\nx + (x + 1) = 1.10\n\\]\n\nSimplifying this equation:\n\n\\[\n2x + 1 = 1.10\n\\]\n\nSubtracting 1 from both sides:\n\n\\[\n2x = 0.10\n\\]\n\nDividing both sides by 2:\n\n\\[\nx = 0.05\n\\]\n\nThus, the cost of the ball is **$0.05** (5 cents). \n\nTherefore, you paid **$0.05** for the ball.","metadata":{"model":"GPT 4o mini","version":"gpt-4o-mini-2024-07-18","speed":"60","tokens":"1,254","cost":"0.000","total_time_second":3.01},"search_query":null,"citations":[],"documents":[]},{"id":"0ff43cc0-73a6-4dc7-832a-c43b48c8fa13","created_at":"2025-03-17T17:45:21Z","state":"done","prompt":"Are you sure?","reply":"<p>Yes, I am sure. Let's go through the solution again step by step to confirm:</p>\n<ol>\n<li>Let the cost of the ball be <span><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>x</mi></mrow></math></span> dollars.</li>\n<li>The bat costs $1 more than the ball, so its cost is <span><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></math></span> dollars.</li>\n<li>The total cost of the ball and bat together is $1.10.</li>\n</ol>\n<p>We can set up the equation:</p>\n<p>\n<div class=\"math-box\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"><mrow><mi>x</mi><mo>+</mo><mo stretchy=\"false\">(</mo><mi>x</mi><mo>+</mo><mn>1</mn><mo stretchy=\"false\">)</mo><mo>=</mo><mn>1.10</mn></mrow></math></div>\n</p>\n<p>This simplifies to:</p>\n<p>\n<div class=\"math-box\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"><mrow><mn>2</mn><mi>x</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>1.10</mn></mrow></math></div>\n</p>\n<p>Subtracting 1 from both sides gives:</p>\n<p>\n<div class=\"math-box\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"><mrow><mn>2</mn><mi>x</mi><mo>=</mo><mn>0.10</mn></mrow></math></div>\n</p>\n<p>Dividing both sides by 2 results in:</p>\n<p>\n<div class=\"math-box\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"><mrow><mi>x</mi><mo>=</mo><mn>0.05</mn></mrow></math></div>\n</p>\n<p>Thus, the cost of the ball is indeed <strong>$0.05</strong> (5 cents). The bat, being $1 more than the ball, would then cost <strong>$1.05</strong>. Together, they add up to <strong>$1.10</strong>. </p>\n<p>So, the answer is correct: you paid <strong>$0.05</strong> for the ball.</p>","md":"Yes, I am sure. Let's go through the solution again step by step to confirm:\n\n1. Let the cost of the ball be \\( x \\) dollars.\n2. The bat costs $1 more than the ball, so its cost is \\( x + 1 \\) dollars.\n3. The total cost of the ball and bat together is $1.10.\n\nWe can set up the equation:\n\n\\[\nx + (x + 1) = 1.10\n\\]\n\nThis simplifies to:\n\n\\[\n2x + 1 = 1.10\n\\]\n\nSubtracting 1 from both sides gives:\n\n\\[\n2x = 0.10\n\\]\n\nDividing both sides by 2 results in:\n\n\\[\nx = 0.05\n\\]\n\nThus, the cost of the ball is indeed **$0.05** (5 cents). The bat, being $1 more than the ball, would then cost **$1.05**. Together, they add up to **$1.10**. \n\nSo, the answer is correct: you paid **$0.05** for the ball.","metadata":{"model":"GPT 4o mini","version":"gpt-4o-mini-2024-07-18","speed":"97","tokens":"1,500","cost":"0.000","total_time_second":2.42},"search_query":null,"citations":[],"documents":[]}]